7N-39-0R 155692=

First and Final Report to the National Aeronautics and Space Administration of:

CYCLE-DEPENDENT STUDIES OF SEMI-REGULAR GIANT STARS

NAME AND ADDRESS OF

INSTITUTION:

The Regents of the University of Colorado

Campus Box B-19

Boulder, Colorado 80309-0019

NASA GRANT NUMBER: UCB ACCOUNT NUMBER:

NAG5-1145 153-3219

PRINCIPAL INVESTIGATOR:

Dr. Philip G. Judge

Joint Institute for Laboratory Astrophysics

University of Colorado

REPORT COVERING THE PERIOD:

06/14/89 - 06/14/90

DISTRIBUTION:

Two Copies to:

NASA Sci./Tech. Info. Facility

P.O. Box 8757

Balt.-Washington Int'l. Airport

Maryland 21240

One Copy to: Ms. Jan Farrar

Office of Contracts and Grants

University of Colorado Campus Box B-19

One Copy to:

Ms. Genevieve Wiseman, Grants Officer, NASA/ Goddard Space Flight Center

Greenbelt, MD 20771

REPORT SUBMITTED:

December 31, 1990

(NASA-CR-194346) CYCLE-DEPENDENT STUDIES OF SEMI-REGULAR GIANT STARS Final Report, 14 Jun. 1989 - 14 Jun. 1990 (Colorado Univ.) 6 p

N94-70769

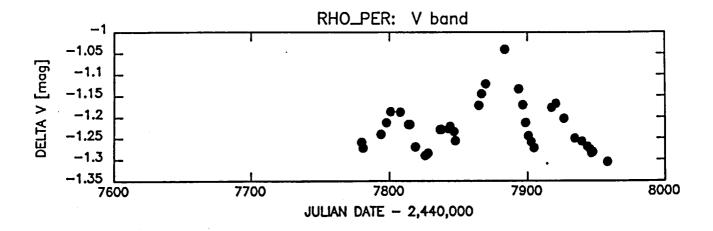
Unclas

Z9/89 0185582 First and Final Status Report (NAG5-1145) covering 06/14/89 - 06/14/90 CYCLE-DEPENDENT STUDIES OF SEMI-REGULAR GIANT STARS

Philip G. Judge, P.I. (University of Colorado)

This NASA grant covers my IUE observing program involving the acquisition and analysis of chromospheric data of three semi-regular giant stars strategically placed in the HR diagram to study mass-loss and chromospheric heating processes. The work is mostly complete and I am proceeding to write up the results for presentation at the summer 1991 AAS meeting and for publication in the Astronomical Journal.

Results to date


Our results can be best summarised in the form of the figures and Tables which are attached to this report.

To summarize, these figures show very significant (> 3σ) and substantial variability of the profiles of Mg II resonance lines. The detailed changes in the line profiles reveal several clues to the mechanisms leading to chromospheric heating and mass-loss: (i) the changes are not always symmetric with respect to the red and blue wings of the lines. This implies that substantial spatial inhomogeneities are present on a geometrical scale comparable to the stellar sizes. (ii) The most dramatic changes occur near the self-reversed line "cores" where the profiles are formed high in the chromospheric layers. (iii) In g Her statisically significant changes occur only in the red wings of the k. This supports the previously suggested hypothesis that this part of the line is obliterated by overlying absorption by circumstellar material.

Table 2
LOG OF IUE OBSERVATIONS.

Star/Image	e Disp.	Exp. time	FES counts ^a (Target)	FES counts (Comparison)	Date ^b	notes
g Her						
LWP 15845	HI	40m	441	724	185	
LWP 15846	LO	4m		121	185	
LWP 15939	HI	55m	436	745	197	
LWP 16015	HI	55m	437	741	210	
LWP 16102	HI	55 m	442	749	224	
LWP 16170	HI	70m	443	753	231	
LWP 16269	HI	55m	467	732	245	
LWP 16312	HI	$70\mathbf{m}$	455	•••	252	
LWP 16 3 65	LO ·	5 m	449	731	258	
LWP 16 3 66	LO	10 m		.01	258	
LWP 16367	LO	5 m			258	
LWP 16411	LO	5m	449		266	
LWP 16458	LO	5m	457	•••	273	
Per						
WP 16069	HI	13m	1113	265	217	
WP 16104	HI	15m	1159		224	
WP 16171	HI	15m	1190	•••	231	
WP 16213	HI	12m	1182	•••	231	
WP 16214	LO	45s		•••	238	
WP 16270	HI	12m	1145	269	245	
WP 16214	LO	50s	1212	266	252	
WP 16311	HI	10 m		200	252	
WP 16364	HI	11m	1234	257	258	
WP 16410	HI	12m	1174		266	
WP 16456	HI	12m	1158	24406°	273	
Lyr						
WP 15847	HI	20m	763		185	
VP 15940	HI	20m	710	13032°	197	
VP 16016	LO	2m	698	12679°	210	
VP 16017	HI	20m		,	210	
VP 16070	HI	20m	736	11906°	217	
VP 16071	LO	2m			217	
	HI	20m	789		224	
	HI	20m	813	12530°	238	
	HI	20m	628	12736°	266	
P 16457	LO	2m	696		273	

NOTES: a FES counts in the fast track underlap mode. b Date = Julian Date -2,447,526.5. c FES counts in the fast track overlap mode.

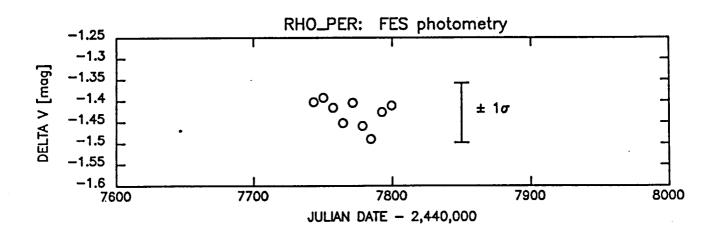


Figure 1: Ground-based photometry and IUE FES photometry for the three target stars. The V-magnitudes are given as V(target) - V(comparison) from both the Phoenix-10 telescope and from the FES photometry computed as described by Fireman and Imhoff (1989). Both datasets for each star are normalized to the same comparison stars. The offsets (~ 0.2 and ~ 0.7 magnitudes for ρ Per and g Her respectively) result from the poor calibration of the FES photometry for very red stars.

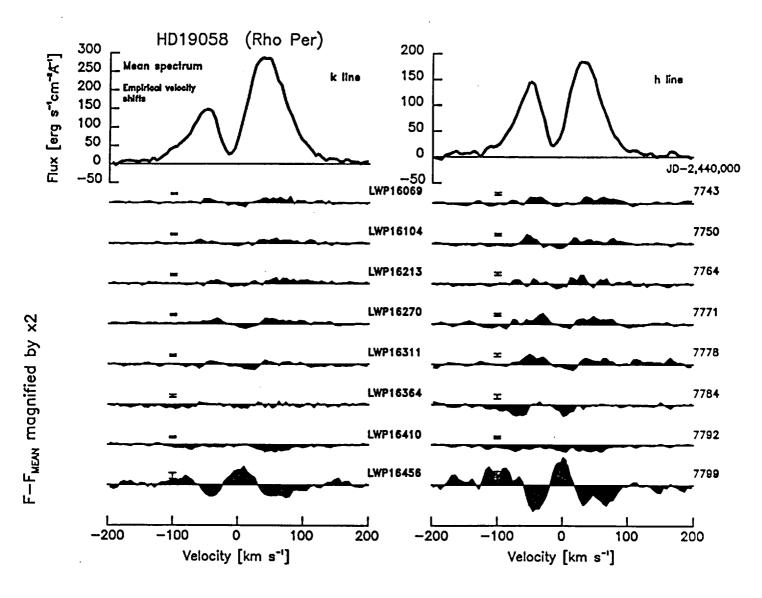


Figure 2: Spectra of the Mg II h and k lines obtained in the time-series observations of ρ Per. The top panel shows the "mean" spectrum obtained by an unweighted average of the individual spectra. The abscissa is the Doppler shift in km s⁻¹. (Note that for optically thick lines such as Mg II h and k these velocities do not represent directly the actual gas motions, but instead depend on the radiation transport). The lower panels show the difference between the individual spectra and the mean spectrum, with fluxes magnified by a factor of 2 for clarity. The $\pm 1\sigma$ error bars were computed from the standard deviations of the fluxes between the (absolute) Doppler shift velocities of 150 and 250 km s⁻¹.

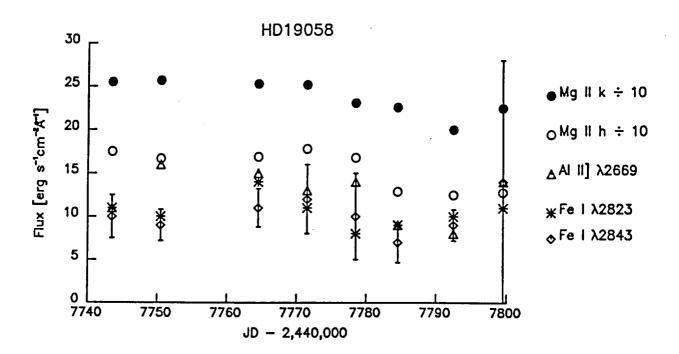


Figure 3: Variations in the integrated fluxes of the Mg II, Fe I and Al II] lines in the time series spectra of ρ Per. Contrary to the findings of Eaton et al (1990), we find no evidence for statistically significant differences between the behavior of the various emission lines in any of our stars.